Set Code :	T2
Booklet Code :	В

PHYSICS

51.	The linear momentum of a particle varies	s with time t as $p = a+bt+ct^2$ which	of the following is
	correct?		

- (1) Force varies with time in a quadratic manner.
- (2) Force is time-dependent.
- (3) The velocity of the particle is proportional to time.
- (4) The displacement of the particle is proportional to t. .

52. A shell of mass m moving with a velocity ν suddenly explodes into two pieces. One part of mass m/4 remains stationary. The velocity of the other part is

- (1) v
- (2) 2v
- (3) 3v/4

53. The velocity of a freely falling body after 2s is

- (1) 9.8 ms⁻¹
- (2) 10.2 ms⁻¹
- (3) 18.6 ms⁻¹
- (4) 19.6 ms⁻¹

54. A large number of bullets are fired in all directions with the same speed u. The maximum area on the ground on which these bullets will spread is

- (2) $\frac{\pi u^4}{g^2}$ (3) $\frac{\pi u^2}{g^4}$ (4) $\frac{\pi u}{g^4}$

The minimum stopping distance for a car of mass m, moving with a speed v along a level road, if the coefficient of friction between the tyres and the road is µ, will be

- (1) $\frac{v^2}{2\mu g}$ (2) $\frac{v^2}{\mu g}$ (3) $\frac{v^2}{4\mu g}$ (4) $\frac{v}{2\mu g}$

56. When a bicycle is in motion, the force of friction excreted by the ground on the two wheels is such that it acts

- (1) In the backward direction on the front wheel and in the forward direction on the rear wheel
- (2) In the forward direction on the front wheel and in the backward direction on the rear wheel
- (3) In the backward direction on both the front and the rear wheels
- (4) In the forward direction on both the front and the rear wheels

Set Code :	T2
ooklet Code :	В

	Set	Code							
	Booklet	Code							
57.	In a perfectly inelastic collision, the two bodies								
	(1) strike and explode (2) explode without striking								
	(3) implode and explode (4) combine and move together								
58.	Under the action of a constant force, a particle is experiencing a constant acceler power is	ation,							
	(1) zero (2) positive								
	(3) negative (4) increasing uniformly with time	e							
59.	Consider the following two statements:								
	A: Linear momentum of a system of particles is zero.								
. 10	B: Kinetic energy of a system of particles is zero.								
	Then								
	(1) A implies B & B implies A								
	(2) A does not imply B & B does not imply A								
	(3) A implies B but B does not imply A	lū.							
	(4) A does not imply B but B implies A								
	(4) Adoes not imply B out B implies A	7/0							
60.	An engine develops 10 kW of power. How much time will it take to lift a mass cheight of 40 m? (Given $g = 10 \text{ ms}^{-2}$)	of 200							
	(1) 4s (2) 5s (3) 8s (4) 10s								
61.	If a spring has time period T, and is cut into n equal parts, then the time period will	ll be							
	(1) $T\sqrt{n}$ (2) $\frac{T}{\sqrt{n}}$ (3) nT (4) T								
62.	When temperature increases, the frequency of a tuning fork								
	(1) increases								
	(2) decreases								
	(3) remains same								
	(4) increases or decreases depending on the materials								
	11-В								

Set Code :	T2
Booklet Code :	В

63.	Ifa	simple harm	onic motio	on is repi	resented	by $\frac{a}{a}$	$\frac{d^2x}{dy^2} + \alpha x = 0,$	its time p	eriod i	s	
	(1)	$2\pi\sqrt{\alpha}$	(2)	2πα		(3)	$\frac{2\pi}{\sqrt{\alpha}}$	(4)	$\frac{2\pi}{\alpha}$		
64.		inema hall ha				equi	red to have r	reverberat	ion tin	ne of 1.5	seconds.
	(1)	850 w-m ²	5.5		80	(2)	82.50 w-m	2			(4)
	(3)	8.250 w-m ²	1			(4)					
65.	To a	bsorb the sou	ind in a ha	ll which	of the fol	lowi	ng are used			,	
	(1)	Glasses, sto				(2)		rtains			
	(3)	Polished su	rfaces				Platforms				*;
66.	IfN	represents av	agadro's r	number, t	hen the n	umb	er of molecu	iles in 6 gr	m of hy	drogen	at NTP is
	(1)		(2)			(3)			N/6	drogen	
67.	The	mean transla	tional kine	etic energ	gy of a pe	rfec	t gas molecu	le at the to	empera	ture T k	Cis
	100	$\frac{1}{2}kT$						(4)			
68.	Tho	amount of ho	at airean ta	o bodes					10.00		n - A
00.	(1)	amount of he water equiva		a body v							
	(3)	specific hea					thermal hear				20
	(3)	specific fiea	•			(ד.	temperature	gradient			8 9
69.	Duri:	ng an adiabat lute temperat	tic process ure. The ra	the preatio Cp/C	ssure of a	a gas	is found to	be propor	tional	to the cu	be of its
	(1)	$\frac{3}{2}$	(2)	4 .	(3)	2	(4)	5 3		٠.
					is.		71	- 4			
		183			12-	В	in wi				

Set Code :	T2
Booklet Code :	

- 70. Cladding in the optical fiber is mainly used to
 - (1) to protect the fiber from mechanical stresses
 - (2) to protect the fiber from corrosion
 - (3) to protect the fiber from mechanical strength
 - (4) to protect the fiber from electromagnetic guidance
- 71. Two quantities A and B are related by the relation A/B = m where m is linear mass density and A is force. The dimensions of B will be
 - same as that of latent heat
 - same as that of pressure
 - (3) same as that of work
 - same as that of momentum
- 72. The dimensional formula of capacitance in terms of M, L, T and I is
 - (1) $[ML^2T^2I^2]$
- (2) [ML-2T4]
- (3) $[M^{-1}L^3T^3I]$
- 73. If l, m and n are the direction cosines of a vector, then

 - (1) l+m+n=1 (2) $l^2+m^2+n^2=1$ (3) $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}=1$

- 74. The angle between i+j and j+k is
 - (1) 0°
- (2) 90°
- (3) 45°
- 75. A particle is moving eastwards with a velocity of 5 ms-1. In 10 seconds the velocity changes to 5 ms-1 northwards. The average acceleration in this time is
 - (1) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-west
- (2) zero
- (3) $\frac{1}{2}$ ms⁻² towards north
- (4) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-east

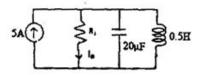
Set Code:	T2
Booklet Code:	В

CHEMISTRY

76.	Pota	ssium metal an	d potas	sium ions								
	(1)	both react wit	h water		(2)	have the same	have the same number of protons					
	(3)	both react wit	h chlor	ine gas	(4)	have the same	electro	onic configuration				
77.	stan	dard flask. 10 m	l of this f solution	ide were dissolve solution were pip on. The concentra 1.0 M	etted tion o	out into another	flask ar	made upto 100 ml in a nd made up with distilled solution now is 0.25 M				
	(1)	0.1 M	(2)	1.0 141	(3)	0.5 141	(+)	0.25 111				
78.	Con	Concentration of a 1.0 M solution of phosphoric acid in water is										
20.70		0.33 N		1.0 N		2.0 N		3.0 N				
79.	Whi	ich of the follov	ving is	a Lewis acid?			×	3.7				
	(1)	Ammonia		(2)	Berylium chlo	ride						
	(3)	Boron trifluor	ride	£.	(4)	Magnesium ox	cide					
80.	Which of the following constitutes the components of a buffer solution?											
δU.	(1) Potassium chloride and potassium hydroxide											
	(2) Sodium acetate and acetic acid											
	(3) Magnesium sulphate and sulphuric acid											
	(4)	Calcium chlo	ride and	d calcium acetate								
81.	Whi	ich of the follov	vino is	an electrolyte?		2.0						
01.		Acetic acid		Glucose	(3)	Urea	(4)	Pyridine				
82.		culate the Stand $Cu/Cu^{+2} = (-) 0$.		of the cell, Cd	/Cd+2	//Cu ⁺² /Cu given	that E	E^0 Cd/Cd ⁺² = 0.44V and				
	(1)	(-) 1.0 V	(2)	1.0 V	(3)	(-) 0.78 V	(4)	0.78 V				
83.	Asc	olution of nicke	l chlori	ide was electroly	sed u	sing Platinum e	lectrod	les. After electrolysis,				
	(1)					Cl2 gas will be liberated at the cathode						
	(3)			ed at the anode			deposi	ted on the cathode				
		20.	7									

Set Code :	T2
Booklet Code :	

									Booklet Code :
84.	Whi	ch of the follo	wing me	tals will u	ndergo	oxid	ation fastest?		18.
	(1)		(2)		i i		Zinc	(4)	Iron
85.	Whi	ch of the follo	wing car	nnot be us	ed for t	he ste	erilization of o	lrinking	water?
	(1)	Ozone				(2)	Calcium Ox	ychlorid	e
	(3)	Potassium Cl	hloride			(4)	Chlorine wa	ter	
86.		ater sample sho				g/litro	e of magnesiu	m sulph	ate. Then, its hardness
	.(1)	1.0 ppm	(2)	1.20 ppn	n	(3)	0.60 ppm	(4)	2.40 ppm
87.	Soda	a used in the L	-S proce	ess for soft	tening	of wa	ter is, Chemic	ally.	
	(1)	sodium bicar	bonate			(2)	sodium carb	onate de	cahydrate
	(3)	sodium carbo	onate			(4)	sodium hydr	oxide (4	10%)
88.	The	process of cen	nentatio	n with zine	powd	er is k	nown as		
	(1)	sherardizing	(2)	zincing		(3)	metal claddi	ng (4)	electroplating
89.	Carr	osion of a met	al is fas	test in					
	(1)	rain-water	(2)	acidulate	d water	r (3)	distilled wat	er (4)	de-ionised water
90 -	Whi	ch of the follo	wing is:	a thermose	et nolvi	mer?	e ^e	12	
	(1)	Polystyrene			- Poly	(2)	PVC		
	(3)	Polythene				(4)	Urea-formal	dehyde	resin
91.	Che	mically, neopre	ene is			38			F
	*	polyvinyl ben			121	(2)	polyacetyler	ie	
	(3)	polychloropr			e.		poly-1,3-but		3
92.	Vulc	anization invo	lves hea	ting of rav	rubbe	r with			
	(1)	selenium elei		,		(2)	elemental su	lphur	


Set Code :	T2
Booklet Code :	

93.	Petr	ol largely contain	ins			-		2	
	(1)	a mixture of ur	isatura	ted hydrocarbor	ns C ₅ -	C ₈			
	(2)	a mixture of be	nzene	, toluene and xy	lene			9	
	(3)	a mixture of sa	turate	d hydrocarbons	C ₁₂ -C	14-			
	(4)	a mixture of sa	turate	d hydrocarbons	C ₆ - C ₈	Ref.			
94.	Whi	ch of the follow	ing ga	ses is largely res	sponsil	ole for acid-rain	?		
	(1)	SO ₂ & NO ₂			(2)	CO ₂ & water va	apour		
	(3)	CO ₂ &N ₂			(4)	N ₂ & CO ₂			
95.	BOI	O stands for		8					
,,,	(1)	Biogenetic Ox	voen Γ	emand	(2)	Biometric Oxy	gen D	emand	
	(3)	Biological Oxy			(4)	Biospecific Ox	T		
	(3)	Diological Ox	gen	Ciliana	(.)		,,,	2	
06	The	- volenav alaatra	nia aar	ofiguration of Pl	hoenho	rous atom (At.N	Jo. 15	is	24
96.		3s ² 3p ³	(2)	3s ¹ 3p ³ 3d ¹	(3)	3s ² 3p ² 3d ¹ .	(4)	3s1 3p2 3d2	
97.	Ane	element 'A' of At	.No.12	combines with	an eler	nent 'B' of At.N	o.17.7	The compoun	d formed is
	(1)	covalent AB			(3)	$\operatorname{covalent} \operatorname{AB}_2$	(4)	ionic AB	
98.	The	number of neut	rons ni	resent in the ator	m of	Ba ¹³⁷ is			
90.		56	(2)	137		193	(4)	81	
99.	Hvd	lrogen bonding i	n wate	r molecule is re	sponsi	ble for		1	
2	(1)	decrease in its			(2)	increase in its	degree	of ionizatio	n
		increase in its			(4)	decrease in its	boilin	g point	
100	In th	ne HCl molecule	the b	onding between	hydro	gen and chlorine	is		
100.		purely covalen			(3)	polar covalent	(4)	complex co	oordinate
						38		T.	

ELECTRICAL AND ELECTRONICS ENGINEERING

 In a given below circuit, at resonance I, is equ 	al	I	l	l	ı	ı						ı	ı	ĺ	l	ı	ı	l	١	ı	ı	١	ı	١	ı	١	ı	ı	ı	ı	l	١	١	ı	l	l	Į		Į	Į	ı	ı	ì	1	а	ć	i	ı	υ	ı	1	C	2	É		ŝ	S	i	i	1			l.]		2	e)	C	(1	n	u	1	a	lä	n	1	0	(S	S	S	S	5				2	3	9	e	e	ť	r	r	r	I	1			t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	t	l																					
--	----	---	---	---	---	---	--	--	--	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	---	---	--	--	----	---	--	---	---	---	---	---	---	---	---	---	---	----	---	---	---	---	--	---	---	---	---	---	--	--	--	---	---	---	---	---	---	---	---	---	---	---	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

- (1) 0A
- (2) 10A
- (3) 5A
- (4) 0.5 A

102. An alternating current has a peak value of 2A. If its Peak Factor is $\sqrt{2}$ and its form factor is

 $\frac{\pi}{2\sqrt{2}}$, then its average value is

- (1) $\frac{8}{\pi}A$ (2) $\frac{4}{\pi}A$ (3) $\frac{\pi}{2}A$ (4) $\frac{\pi}{4}A$

103. The power factor of an incandescent bulb is

- (1) 0.8 lagging
- (2) 0.8 leading
- (3) unity

104. The power factor of a circuit comprising resistance R and reactance X in series is

- (1) $\frac{R}{\sqrt{R^2 + X^2}}$ (2) $\frac{X}{\sqrt{R^2 + X^2}}$ (3) $\frac{R}{R^2 + X^2}$ (4) $\frac{X}{R^2 + X^2}$

105. The working principle of a Transformer is

(1) Electromagnetism

(2) Conduction

(3) Energy transfer

(4) Mutual induction

106. The equivalent resistance of a transformer having transformation ratio (K) = 5 and R1 = 0.1 Ω when referred to secondary is

- (1) 150Ω
- (2) 0.02Ω
- (3) 0.004Ω
- (4) 2.5Ω

107. What is load at which maximum efficiency occurs in case of a 100 kVA transformer with iron loss of 1 kW and full load copper loss of 2 kW

- (1) 100 kVA
- (2) 70.7 kVA
- 50.5 kVA $(3\cdot)$
- (4) 25.2 kVA

17-B

(EEE)

									Set Co	de: T2
							7.00		Booklet Co	
108	In h	gh frequency tra	nsfor	mers, the r	nateri	ial use	d for core is		. 8)	
100.		Ferrite	(2)	Iron		(3)		(4)	Silica	
								٠		
109.	Buc	hholz relay is use	ed to							8 5
	(1)	identify faults								
	(2)	rectify the faul	t				*			
	(3)	trip-off connec		when fault	exist	S				
	(4)	clears the fault							1.21	
110	D:	ribution transfor		ora design	and to	Leen	core losses mi	nimun	and conne	r losses are
110.		ively less impor			ica ic	ксер	core losses ini	mman	t und coppe	100000 410
		The primary of			s are e	nergize	ed for all the 24 h	ours in	a day and co	re loss occur
	(*)	throughout the	day wh	nile copper	loss o	ccur or	nly when the sec	ondary	is supplying	the load
	(2)	To ensure maxi	3,500				N 540			
10	(3)	Greater core lo	sses n	ny destroy	in in	sulatio	n			
	(4)	Greater core lo	sses v	vill heat up	the o	oil of t	he transformer	rapidly		
							*	1022 1		
111.		ch one of the fo			s give	es mor	e accurate resul	t for d	etermination	of voltage
	_	lation of an alter	mator							
	(1)	MMF method				(2)		mpeda	nce method	
	(3)	Potier triangle	metho	od		(4)	ASA method			
						· 100000000	* =		114	
112.	Hyd	rogen is used in			main					
	(1)	reduce distortion					cool the mach		100000	
	(3)	strengthen the	magne	etic field		(4)	reduce eddy c	urrent	108868	
113	The	frequency of em	foen	erated in a	n 8-pc	ole alte	rnator running	at 900	rpm is	
115.		50 Hz		120 Hz	· · · ·		90 Hz		60 Hz	
	(1)	30112	(2)	120112		(5)	,,,,,,			
114.	The	angle between s	ynchr	onously ro	tating	stator	flux and rotor p	oles of	a synchron	ous motor is
		ed angl								
	(1)	Synchronizing	(2)	Slip	140	(3)	Power factor	(4)	Torque	
							2			
						18-B				(EEE)